Serveur d'exploration sur Mozart

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A set of diagnostics for evaluating chemistry-climate models in the extratropical tropopause region

Identifieur interne : 000133 ( PascalFrancis/Corpus ); précédent : 000132; suivant : 000134

A set of diagnostics for evaluating chemistry-climate models in the extratropical tropopause region

Auteurs : L. L. Pan ; J. C. Wei ; D. E. Kinnison ; R. R. Garcia ; D. J. Wuebbles ; G. P. Brasseur

Source :

RBID : Pascal:07-0290419

Descripteurs français

English descriptors

Abstract

[1] Three related diagnostics are used to evaluate the representation of chemical transport processes in the extratropical upper troposphere and lower stratosphere (UTLS) by chemistry-transport and chemistry-climate models. The diagnostics are based on in situ observations of ozone, carbon monoxide, water vapor profiles (obtained on board the NASA ER-2 research aircraft, near 65°N and during 1997), and their interrelationships in the UTLS. The first diagnostic compares the observed and modeled UTLS trace gas profiles in a relative altitude coordinate. The second one compares the observed and modeled UTLS tracer relationships. The third one compares the observed and modeled thickness of the tropopause transition layer. Together, they characterize the model's ability to reproduce the observed chemical distribution in the UTLS region and chemical transition across the extratropical tropopause. These are key indicators of whether the contributions of dynamics and chemistry to this region are correctly represented in the models. These diagnostics are used to evaluate the performance of an NCAR chemistry-transport model (CTM), MOZART-3, and a chemistry-climate model (CCM), WACCM3. Results from four model runs with different meteorological fields and grid resolution are examined. Overall, the NCAR models show qualitative agreement with the observations in the location of the chemical transition across the extratropical tropopause. Quantitatively, there are significant differences between the modeled and the observed chemical distributions. Both the meteorological field and grid resolutions are contributing factors to the differences.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0148-0227
A03   1    @0 J. geophys. res.
A05       @2 112
A06       @2 D9
A08 01  1  ENG  @1 A set of diagnostics for evaluating chemistry-climate models in the extratropical tropopause region
A11 01  1    @1 PAN (L. L.)
A11 02  1    @1 WEI (J. C.)
A11 03  1    @1 KINNISON (D. E.)
A11 04  1    @1 GARCIA (R. R.)
A11 05  1    @1 WUEBBLES (D. J.)
A11 06  1    @1 BRASSEUR (G. P.)
A14 01      @1 Atmospheric Chemistry Division, National Center for Atmospheric Research @2 Boulder, Colorado @3 USA @Z 1 aut. @Z 3 aut. @Z 4 aut. @Z 6 aut.
A14 02      @1 Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign @2 Urbana, Illinois @3 USA @Z 2 aut. @Z 5 aut.
A20       @2 D09316.1-D09316.12
A21       @1 2007
A23 01      @0 ENG
A43 01      @1 INIST @2 3144 @5 354000149880920490
A44       @0 0000 @1 © 2007 INIST-CNRS. All rights reserved.
A45       @0 3/4 p.
A47 01  1    @0 07-0290419
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of geophysical research
A66 01      @0 USA
C01 01    ENG  @0 [1] Three related diagnostics are used to evaluate the representation of chemical transport processes in the extratropical upper troposphere and lower stratosphere (UTLS) by chemistry-transport and chemistry-climate models. The diagnostics are based on in situ observations of ozone, carbon monoxide, water vapor profiles (obtained on board the NASA ER-2 research aircraft, near 65°N and during 1997), and their interrelationships in the UTLS. The first diagnostic compares the observed and modeled UTLS trace gas profiles in a relative altitude coordinate. The second one compares the observed and modeled UTLS tracer relationships. The third one compares the observed and modeled thickness of the tropopause transition layer. Together, they characterize the model's ability to reproduce the observed chemical distribution in the UTLS region and chemical transition across the extratropical tropopause. These are key indicators of whether the contributions of dynamics and chemistry to this region are correctly represented in the models. These diagnostics are used to evaluate the performance of an NCAR chemistry-transport model (CTM), MOZART-3, and a chemistry-climate model (CCM), WACCM3. Results from four model runs with different meteorological fields and grid resolution are examined. Overall, the NCAR models show qualitative agreement with the observations in the location of the chemical transition across the extratropical tropopause. Quantitatively, there are significant differences between the modeled and the observed chemical distributions. Both the meteorological field and grid resolutions are contributing factors to the differences.
C02 01  2    @0 220
C02 02  3    @0 001E
C02 03  2    @0 001E01
C03 01  3  FRE  @0 Modèle climat @5 01
C03 01  3  ENG  @0 Climate models @5 01
C03 02  X  FRE  @0 Tropopause @5 02
C03 02  X  ENG  @0 Tropopause @5 02
C03 02  X  SPA  @0 Tropopausa @5 02
C03 03  X  FRE  @0 Phénomène transport @5 03
C03 03  X  ENG  @0 Transport process @5 03
C03 03  X  SPA  @0 Fenómeno transporte @5 03
C03 04  2  FRE  @0 Troposphère @5 04
C03 04  2  ENG  @0 troposphere @5 04
C03 05  2  FRE  @0 Stratosphère @5 05
C03 05  2  ENG  @0 stratosphere @5 05
C03 05  2  SPA  @0 Estratosfera @5 05
C03 06  2  FRE  @0 Transport @5 06
C03 06  2  ENG  @0 transport @5 06
C03 06  2  SPA  @0 Transporte @5 06
C03 07  2  FRE  @0 In situ @5 07
C03 07  2  ENG  @0 in situ @5 07
C03 08  2  FRE  @0 Ozone @5 08
C03 08  2  ENG  @0 ozone @5 08
C03 08  2  SPA  @0 Ozono @5 08
C03 09  2  FRE  @0 Monoxyde carbone @5 09
C03 09  2  ENG  @0 carbon monoxide @5 09
C03 10  X  FRE  @0 Carbone monoxyde @2 NK @2 FX @5 10
C03 10  X  ENG  @0 Carbon monoxide @2 NK @2 FX @5 10
C03 10  X  SPA  @0 Carbono monóxido @2 NK @2 FX @5 10
C03 11  2  FRE  @0 Vapeur eau @5 11
C03 11  2  ENG  @0 water vapor @5 11
C03 11  2  SPA  @0 Vapor agua @5 11
C03 12  2  FRE  @0 NASA @5 12
C03 12  2  ENG  @0 NASA @5 12
C03 13  X  FRE  @0 Composé trace @5 13
C03 13  X  ENG  @0 Trace compound @5 13
C03 13  X  SPA  @0 Compuesto huella @5 13
C03 14  2  FRE  @0 Altitude @5 14
C03 14  2  ENG  @0 altitude @5 14
C03 14  2  SPA  @0 Altitud @5 14
C03 15  2  FRE  @0 Coordonnée @5 15
C03 15  2  ENG  @0 coordinates @5 15
C03 16  2  FRE  @0 Traceur @5 16
C03 16  2  ENG  @0 tracers @5 16
C03 16  2  SPA  @0 Trazador @5 16
C03 17  2  FRE  @0 Epaisseur @5 17
C03 17  2  ENG  @0 thickness @5 17
C03 17  2  SPA  @0 Espesor @5 17
C03 18  X  FRE  @0 Couche transition @5 18
C03 18  X  ENG  @0 Transition layer @5 18
C03 18  X  SPA  @0 Capa transición @5 18
C03 19  2  FRE  @0 Indicateur @5 19
C03 19  2  ENG  @0 indicators @5 19
C03 20  2  FRE  @0 Dynamique @5 20
C03 20  2  ENG  @0 dynamics @5 20
C03 20  2  SPA  @0 Dinámica @5 20
C03 21  X  FRE  @0 Champ météorologique @5 21
C03 21  X  ENG  @0 Meteorological field @5 21
C03 21  X  SPA  @0 Campo meteorológico @5 21
N21       @1 190
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 07-0290419 INIST
ET : A set of diagnostics for evaluating chemistry-climate models in the extratropical tropopause region
AU : PAN (L. L.); WEI (J. C.); KINNISON (D. E.); GARCIA (R. R.); WUEBBLES (D. J.); BRASSEUR (G. P.)
AF : Atmospheric Chemistry Division, National Center for Atmospheric Research/Boulder, Colorado/Etats-Unis (1 aut., 3 aut., 4 aut., 6 aut.); Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign/Urbana, Illinois/Etats-Unis (2 aut., 5 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of geophysical research; ISSN 0148-0227; Etats-Unis; Da. 2007; Vol. 112; No. D9; D09316.1-D09316.12; Bibl. 3/4 p.
LA : Anglais
EA : [1] Three related diagnostics are used to evaluate the representation of chemical transport processes in the extratropical upper troposphere and lower stratosphere (UTLS) by chemistry-transport and chemistry-climate models. The diagnostics are based on in situ observations of ozone, carbon monoxide, water vapor profiles (obtained on board the NASA ER-2 research aircraft, near 65°N and during 1997), and their interrelationships in the UTLS. The first diagnostic compares the observed and modeled UTLS trace gas profiles in a relative altitude coordinate. The second one compares the observed and modeled UTLS tracer relationships. The third one compares the observed and modeled thickness of the tropopause transition layer. Together, they characterize the model's ability to reproduce the observed chemical distribution in the UTLS region and chemical transition across the extratropical tropopause. These are key indicators of whether the contributions of dynamics and chemistry to this region are correctly represented in the models. These diagnostics are used to evaluate the performance of an NCAR chemistry-transport model (CTM), MOZART-3, and a chemistry-climate model (CCM), WACCM3. Results from four model runs with different meteorological fields and grid resolution are examined. Overall, the NCAR models show qualitative agreement with the observations in the location of the chemical transition across the extratropical tropopause. Quantitatively, there are significant differences between the modeled and the observed chemical distributions. Both the meteorological field and grid resolutions are contributing factors to the differences.
CC : 220; 001E; 001E01
FD : Modèle climat; Tropopause; Phénomène transport; Troposphère; Stratosphère; Transport; In situ; Ozone; Monoxyde carbone; Carbone monoxyde; Vapeur eau; NASA; Composé trace; Altitude; Coordonnée; Traceur; Epaisseur; Couche transition; Indicateur; Dynamique; Champ météorologique
ED : Climate models; Tropopause; Transport process; troposphere; stratosphere; transport; in situ; ozone; carbon monoxide; Carbon monoxide; water vapor; NASA; Trace compound; altitude; coordinates; tracers; thickness; Transition layer; indicators; dynamics; Meteorological field
SD : Tropopausa; Fenómeno transporte; Estratosfera; Transporte; Ozono; Carbono monóxido; Vapor agua; Compuesto huella; Altitud; Trazador; Espesor; Capa transición; Dinámica; Campo meteorológico
LO : INIST-3144.354000149880920490
ID : 07-0290419

Links to Exploration step

Pascal:07-0290419

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">A set of diagnostics for evaluating chemistry-climate models in the extratropical tropopause region</title>
<author>
<name sortKey="Pan, L L" sort="Pan, L L" uniqKey="Pan L" first="L. L." last="Pan">L. L. Pan</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Wei, J C" sort="Wei, J C" uniqKey="Wei J" first="J. C." last="Wei">J. C. Wei</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign</s1>
<s2>Urbana, Illinois</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kinnison, D E" sort="Kinnison, D E" uniqKey="Kinnison D" first="D. E." last="Kinnison">D. E. Kinnison</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Garcia, R R" sort="Garcia, R R" uniqKey="Garcia R" first="R. R." last="Garcia">R. R. Garcia</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Wuebbles, D J" sort="Wuebbles, D J" uniqKey="Wuebbles D" first="D. J." last="Wuebbles">D. J. Wuebbles</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign</s1>
<s2>Urbana, Illinois</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Brasseur, G P" sort="Brasseur, G P" uniqKey="Brasseur G" first="G. P." last="Brasseur">G. P. Brasseur</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">07-0290419</idno>
<date when="2007">2007</date>
<idno type="stanalyst">PASCAL 07-0290419 INIST</idno>
<idno type="RBID">Pascal:07-0290419</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000133</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">A set of diagnostics for evaluating chemistry-climate models in the extratropical tropopause region</title>
<author>
<name sortKey="Pan, L L" sort="Pan, L L" uniqKey="Pan L" first="L. L." last="Pan">L. L. Pan</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Wei, J C" sort="Wei, J C" uniqKey="Wei J" first="J. C." last="Wei">J. C. Wei</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign</s1>
<s2>Urbana, Illinois</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kinnison, D E" sort="Kinnison, D E" uniqKey="Kinnison D" first="D. E." last="Kinnison">D. E. Kinnison</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Garcia, R R" sort="Garcia, R R" uniqKey="Garcia R" first="R. R." last="Garcia">R. R. Garcia</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Wuebbles, D J" sort="Wuebbles, D J" uniqKey="Wuebbles D" first="D. J." last="Wuebbles">D. J. Wuebbles</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign</s1>
<s2>Urbana, Illinois</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Brasseur, G P" sort="Brasseur, G P" uniqKey="Brasseur G" first="G. P." last="Brasseur">G. P. Brasseur</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
<imprint>
<date when="2007">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carbon monoxide</term>
<term>Climate models</term>
<term>Meteorological field</term>
<term>NASA</term>
<term>Trace compound</term>
<term>Transition layer</term>
<term>Transport process</term>
<term>Tropopause</term>
<term>altitude</term>
<term>carbon monoxide</term>
<term>coordinates</term>
<term>dynamics</term>
<term>in situ</term>
<term>indicators</term>
<term>ozone</term>
<term>stratosphere</term>
<term>thickness</term>
<term>tracers</term>
<term>transport</term>
<term>troposphere</term>
<term>water vapor</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Modèle climat</term>
<term>Tropopause</term>
<term>Phénomène transport</term>
<term>Troposphère</term>
<term>Stratosphère</term>
<term>Transport</term>
<term>In situ</term>
<term>Ozone</term>
<term>Monoxyde carbone</term>
<term>Carbone monoxyde</term>
<term>Vapeur eau</term>
<term>NASA</term>
<term>Composé trace</term>
<term>Altitude</term>
<term>Coordonnée</term>
<term>Traceur</term>
<term>Epaisseur</term>
<term>Couche transition</term>
<term>Indicateur</term>
<term>Dynamique</term>
<term>Champ météorologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">[1] Three related diagnostics are used to evaluate the representation of chemical transport processes in the extratropical upper troposphere and lower stratosphere (UTLS) by chemistry-transport and chemistry-climate models. The diagnostics are based on in situ observations of ozone, carbon monoxide, water vapor profiles (obtained on board the NASA ER-2 research aircraft, near 65°N and during 1997), and their interrelationships in the UTLS. The first diagnostic compares the observed and modeled UTLS trace gas profiles in a relative altitude coordinate. The second one compares the observed and modeled UTLS tracer relationships. The third one compares the observed and modeled thickness of the tropopause transition layer. Together, they characterize the model's ability to reproduce the observed chemical distribution in the UTLS region and chemical transition across the extratropical tropopause. These are key indicators of whether the contributions of dynamics and chemistry to this region are correctly represented in the models. These diagnostics are used to evaluate the performance of an NCAR chemistry-transport model (CTM), MOZART-3, and a chemistry-climate model (CCM), WACCM3. Results from four model runs with different meteorological fields and grid resolution are examined. Overall, the NCAR models show qualitative agreement with the observations in the location of the chemical transition across the extratropical tropopause. Quantitatively, there are significant differences between the modeled and the observed chemical distributions. Both the meteorological field and grid resolutions are contributing factors to the differences.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0148-0227</s0>
</fA01>
<fA03 i2="1">
<s0>J. geophys. res.</s0>
</fA03>
<fA05>
<s2>112</s2>
</fA05>
<fA06>
<s2>D9</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>A set of diagnostics for evaluating chemistry-climate models in the extratropical tropopause region</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>PAN (L. L.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>WEI (J. C.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>KINNISON (D. E.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>GARCIA (R. R.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>WUEBBLES (D. J.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>BRASSEUR (G. P.)</s1>
</fA11>
<fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign</s1>
<s2>Urbana, Illinois</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s2>D09316.1-D09316.12</s2>
</fA20>
<fA21>
<s1>2007</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>3144</s2>
<s5>354000149880920490</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2007 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>3/4 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>07-0290419</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of geophysical research</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>[1] Three related diagnostics are used to evaluate the representation of chemical transport processes in the extratropical upper troposphere and lower stratosphere (UTLS) by chemistry-transport and chemistry-climate models. The diagnostics are based on in situ observations of ozone, carbon monoxide, water vapor profiles (obtained on board the NASA ER-2 research aircraft, near 65°N and during 1997), and their interrelationships in the UTLS. The first diagnostic compares the observed and modeled UTLS trace gas profiles in a relative altitude coordinate. The second one compares the observed and modeled UTLS tracer relationships. The third one compares the observed and modeled thickness of the tropopause transition layer. Together, they characterize the model's ability to reproduce the observed chemical distribution in the UTLS region and chemical transition across the extratropical tropopause. These are key indicators of whether the contributions of dynamics and chemistry to this region are correctly represented in the models. These diagnostics are used to evaluate the performance of an NCAR chemistry-transport model (CTM), MOZART-3, and a chemistry-climate model (CCM), WACCM3. Results from four model runs with different meteorological fields and grid resolution are examined. Overall, the NCAR models show qualitative agreement with the observations in the location of the chemical transition across the extratropical tropopause. Quantitatively, there are significant differences between the modeled and the observed chemical distributions. Both the meteorological field and grid resolutions are contributing factors to the differences.</s0>
</fC01>
<fC02 i1="01" i2="2">
<s0>220</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001E</s0>
</fC02>
<fC02 i1="03" i2="2">
<s0>001E01</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Modèle climat</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Climate models</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Tropopause</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Tropopause</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Tropopausa</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Phénomène transport</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Transport process</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Fenómeno transporte</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="2" l="FRE">
<s0>Troposphère</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="2" l="ENG">
<s0>troposphere</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="2" l="FRE">
<s0>Stratosphère</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="ENG">
<s0>stratosphere</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="SPA">
<s0>Estratosfera</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="2" l="FRE">
<s0>Transport</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="ENG">
<s0>transport</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="SPA">
<s0>Transporte</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="2" l="FRE">
<s0>In situ</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="2" l="ENG">
<s0>in situ</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="2" l="FRE">
<s0>Ozone</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="2" l="ENG">
<s0>ozone</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="2" l="SPA">
<s0>Ozono</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="2" l="FRE">
<s0>Monoxyde carbone</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="ENG">
<s0>carbon monoxide</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Carbone monoxyde</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Carbon monoxide</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Carbono monóxido</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="2" l="FRE">
<s0>Vapeur eau</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="2" l="ENG">
<s0>water vapor</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="2" l="SPA">
<s0>Vapor agua</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="2" l="FRE">
<s0>NASA</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="2" l="ENG">
<s0>NASA</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Composé trace</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Trace compound</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Compuesto huella</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="2" l="FRE">
<s0>Altitude</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="2" l="ENG">
<s0>altitude</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="2" l="SPA">
<s0>Altitud</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="2" l="FRE">
<s0>Coordonnée</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="2" l="ENG">
<s0>coordinates</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="2" l="FRE">
<s0>Traceur</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="2" l="ENG">
<s0>tracers</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="2" l="SPA">
<s0>Trazador</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="2" l="FRE">
<s0>Epaisseur</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="2" l="ENG">
<s0>thickness</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="2" l="SPA">
<s0>Espesor</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Couche transition</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Transition layer</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Capa transición</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="2" l="FRE">
<s0>Indicateur</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="2" l="ENG">
<s0>indicators</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="2" l="FRE">
<s0>Dynamique</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="2" l="ENG">
<s0>dynamics</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="2" l="SPA">
<s0>Dinámica</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Champ météorologique</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Meteorological field</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Campo meteorológico</s0>
<s5>21</s5>
</fC03>
<fN21>
<s1>190</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 07-0290419 INIST</NO>
<ET>A set of diagnostics for evaluating chemistry-climate models in the extratropical tropopause region</ET>
<AU>PAN (L. L.); WEI (J. C.); KINNISON (D. E.); GARCIA (R. R.); WUEBBLES (D. J.); BRASSEUR (G. P.)</AU>
<AF>Atmospheric Chemistry Division, National Center for Atmospheric Research/Boulder, Colorado/Etats-Unis (1 aut., 3 aut., 4 aut., 6 aut.); Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign/Urbana, Illinois/Etats-Unis (2 aut., 5 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of geophysical research; ISSN 0148-0227; Etats-Unis; Da. 2007; Vol. 112; No. D9; D09316.1-D09316.12; Bibl. 3/4 p.</SO>
<LA>Anglais</LA>
<EA>[1] Three related diagnostics are used to evaluate the representation of chemical transport processes in the extratropical upper troposphere and lower stratosphere (UTLS) by chemistry-transport and chemistry-climate models. The diagnostics are based on in situ observations of ozone, carbon monoxide, water vapor profiles (obtained on board the NASA ER-2 research aircraft, near 65°N and during 1997), and their interrelationships in the UTLS. The first diagnostic compares the observed and modeled UTLS trace gas profiles in a relative altitude coordinate. The second one compares the observed and modeled UTLS tracer relationships. The third one compares the observed and modeled thickness of the tropopause transition layer. Together, they characterize the model's ability to reproduce the observed chemical distribution in the UTLS region and chemical transition across the extratropical tropopause. These are key indicators of whether the contributions of dynamics and chemistry to this region are correctly represented in the models. These diagnostics are used to evaluate the performance of an NCAR chemistry-transport model (CTM), MOZART-3, and a chemistry-climate model (CCM), WACCM3. Results from four model runs with different meteorological fields and grid resolution are examined. Overall, the NCAR models show qualitative agreement with the observations in the location of the chemical transition across the extratropical tropopause. Quantitatively, there are significant differences between the modeled and the observed chemical distributions. Both the meteorological field and grid resolutions are contributing factors to the differences.</EA>
<CC>220; 001E; 001E01</CC>
<FD>Modèle climat; Tropopause; Phénomène transport; Troposphère; Stratosphère; Transport; In situ; Ozone; Monoxyde carbone; Carbone monoxyde; Vapeur eau; NASA; Composé trace; Altitude; Coordonnée; Traceur; Epaisseur; Couche transition; Indicateur; Dynamique; Champ météorologique</FD>
<ED>Climate models; Tropopause; Transport process; troposphere; stratosphere; transport; in situ; ozone; carbon monoxide; Carbon monoxide; water vapor; NASA; Trace compound; altitude; coordinates; tracers; thickness; Transition layer; indicators; dynamics; Meteorological field</ED>
<SD>Tropopausa; Fenómeno transporte; Estratosfera; Transporte; Ozono; Carbono monóxido; Vapor agua; Compuesto huella; Altitud; Trazador; Espesor; Capa transición; Dinámica; Campo meteorológico</SD>
<LO>INIST-3144.354000149880920490</LO>
<ID>07-0290419</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/MozartV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000133 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000133 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    MozartV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:07-0290419
   |texte=   A set of diagnostics for evaluating chemistry-climate models in the extratropical tropopause region
}}

Wicri

This area was generated with Dilib version V0.6.20.
Data generation: Sun Apr 10 15:06:14 2016. Site generation: Tue Feb 7 15:40:35 2023